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Abstract. The goal of this paper is to discover some possibilities for applying the proximal point
method to nonconvex problems. It can be proved that – for a wide class of problems – proximal reg-
ularization performed with appropriate regularization parameters ensures convexity of the auxiliary
problems and each accumulation point of the method satisfies the necessary optimality conditions.
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1. Introduction

The proximal point method was first suggested by Martinet [24] for solving varia-
tional problems of the form

min {f (u) : u ∈ K}, (1.1)

wheref : V → ¯IR ≡ IR ∪ {+∞} is a proper convex lower semicontinuous
functional andK is a convex closed subset of a Hilbert spaceV .

The method is described as

ui+1 ≈ arg min
u∈K

{
f (u)+ χi

2
‖u− ui‖2

}
, (1.2)

with u0 ∈ V an arbitrary point and{χi} a given sequence, 0< χi ≤ χ̄ <∞.
Obviously, to deal with a real numerical algorithm, Method (1.2) has to be

combined with an optimization algorithm for solving the auxiliary problems

min {f (u)+ χi
2
‖u− ui‖2 : u ∈ K}. (1.3)

If the optimal setU ∗ of Problem (1.1) is non-empty, then weak convergence of the
iterates in (1.2) to someu∗ ∈ U ∗, as well as convergence of the objective values
{f (ui)} to f (u∗), are guaranteed under the condition that, in each prox-stepi, the
pointui+1 approximates

Pf,K,χiu
i = arg min

u∈K

{
f (u)+ χi

2
‖u− ui‖2

}
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with sufficient accuracy, namely,

‖ui+1 −Pf,K,χiu
i‖ ≤ εi,

∑
i

εi

χi
<∞. (1.4)

Concerning the conditions providing strong convergence of{ui}, see [18, 23].
Some of these conditions do not exclude thatdim U ∗ = ∞.

Proximal point methods are a fundamental tool for solving ill-posed or ill-
conditioned problems. Because, in distinction to the Tikhonov regularization,χi →
0 is not required for ensuring convergence, the auxiliary problems (1.3) possess
better properties than the corresponding auxiliary problems in Tikhonov’s method.
In particular, iff is sufficiently smooth, then by means of an appropriate choice of
χi , one attains at all iterations a proper conditionality of the Hessians of the objec-
tive functions in (1.3) (or their approximations, in caseV is infinite dimensional).

Thus, we deal with well-posed auxiliary problems (1.3), and the behaviour of
the sequence {ui} is defined by the properties of theproximal
mapping

P = Pf,K,χ : a ∈ V → arg min
u∈K

{
f (u)+ χ

2
‖u− a‖2

}
, (χ > 0), (1.5)

which generates the iterates (1.2).

Important properties of the proximal mapping are, in particular (cf. [17], Section
8):

• P is a firmly non-expansive operator, i.e. it holds

‖P v −P v′‖2 ≤ ‖v − v′‖2 − ‖(4 −P )v − (4 −P )v′‖2 ∀v, v′ ∈ V ;
• Pu = u ⇔ u ∈ U ∗;
• the functionalη(a) = minu∈K

{
f (u)+ χ

2‖u− a‖2
}

is convex and continu-
ously differentiable onV , and∇η(a) = χ(a − P a) (differentiability off is
not supposed).

Starting with the papers of Rockafellar [27], the proximal point method was
extended to problems of finding a zero of a maximal monotone (in general, multi-
valued) operator, including as special cases monotone variational inequalities,
convex–concave games etc. It is well-known that theHestenes–Powell multiplier
method(see [26]) for convex programming problems as well as theDouglas–
Rachford splitting method(see [11]) for finding a zero of the sum of two monotone
operators are special cases of the proximal point method.

− In order to clarify this relationship for the Hestenes–Powell multiplier method, let us
consider the convex problem

min{f0(u) : fj (u) ≤ 0, j = 1, ...,m}, V = IRn.
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The current vectorλi+1 in the exact multiplier method, performed with the aug-
mented Lagrangian

L(u, λ, r) = f0(u)+ 1

2r

m∑
j=1

{
max2[0, λj + rfj (u)] − λ2

j

}
,

coincides with

P̃g,IRn+,χλ
i = arg max

λ∈IRm+

{
g(λ)− χ

2
‖λ− λi‖2

}
, χ = 1

r
,

where

g(λ) = inf
u∈IRn

f0(u)+
m∑
j=1

λjfj (u)

 . (1.6)

Here the operator̃Pg,IRn+,χ is an analogue of the proximal mapping (1.5), correspond-
ing to the maximization problem

max{g(λ) : λ ∈ IRm+}.
Obviously,g is a concave function.

Besides the applications of the classical proximal point method, there are a
lot of methods using proximal regularization to stabilize standard optimization or
discretization techniques. A part of these methods can be briefly described as fol-
lows: When the standard algorithm applied to Problem (1.1) constructs (formally)
a sequence of auxiliary problems

min{fi(u) : u ∈ Ki ⊂ V }, (1.7)

then the corresponding ‘regularized’ method takes the form

ũi+1 ≈ arg min
u∈Ki+1

{fi+1(u)+ χi2 ‖u− u
i‖2}, (1.8)

ui+1 = ui + αi(ũi+1− ui), αi ∈ [0,1], (1.9)

i.e. ‘iterative’ regularization of a sequence of auxiliary problems is performed.
Usuallyαi ≡ 1, i.e.ui+1 = ũi+1, but line-search can also be met in the literature.

We refer to [1, 4, 17] for proximal penalty methods, to [2, 26] for proximal mul-
tiplier methods and to [16] for proximal methods in the framework of discretization
of elliptic variational inequalities and convex semi-infinite programming prob-
lems. A modification of the scheme (1.8), (1.9) is developed in [17, 19]: proximal
iterations for thei-th auxiliary problem (1.7) are repeated until they provide a
‘significant’ decrease of the objective functionfi.

In the last fifteen years the number of papers dealing with proximal-like meth-
ods is growing rapidly. One can distinguish some main directions in the develop-
ment of this technique:
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• Modifications of the standard methods for convex optimization in order to
ensure a more qualified convergence of a minimizing sequence (for instance,
to prevent oscillation) and a better stability of the auxiliary problems [cf. 1–4,
17, 26];

• Stable successive approximation or discretization of ill-posed monotone vari-
ational inequalities [cf. 17, 19, 22];

• Decomposition methods for convex minimization problems, without any as-
sumption on strong or strict convexity of the objective functional [cf. 7, 11,
14];

• Proximal-like methods using Bregman’s distance function [cf. 5, 6, 15].

However, convex problems have been considered almost exclusively. Even for
multiplier methods, intensively studied in the nonconvex case, the ‘proximal’ as-
pect has been analyzed only for convex problems, although the functiong, defined
by (1.6), remains concave under nonconvexf0, fj , too.

Reasons for this distrust might be:

• The proximal mapping for a nonconvex problem may be no more nonexpan-
sive, even in an arbitrary small neighborhood of a local or global solution.
This mapping does not necessarily possess the Fejer-property w.r.t.U ∗, too.

EXAMPLE 1. K = V = IR2, f (u) = min{u2
1, u

2
2}. Obviously, the optimal

set of this problem is

U ∗ = {u ∈ IR2 : u1 = 0} ∪ {u ∈ IR2 : u2 = 0}.
Consider the analogue of the proximal mapping (1.5):

a ∈ V → Arg min
u∈K

{
f (u)+ χ

2
‖u− a‖2

}
,

with χ = 2 and take two pointsa1 = (2α, α) anda2 = (α,2α) with an
arbitrary smallα > 0. Then

P a1 =
(
2α,

α

2

)
, P a2 =

(α
2
,2α

)
and

‖P a1−P a2‖ =
√

9

2
α >
√

2α = ‖a1 − a2‖.

• Using the proximal method in the nonconvex case, iterations may terminate
in a point, which is not a local minimum.
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EXAMPLE 2.

V = IR2, K = {u = (u1, u2) : u1+ u2 ≤ 0, u1 ≤ 0,−u2 ≤ 1},

f (u) = −u1− 1

2
u2

2, u0 = (−1

4
,

1

4
).

After one step of the exact proximal method (1.2) performed withχi ≡ 2
we obtainu1 = (0,0), which is a fixed point of the corresponding proximal
mapping, butu1 6∈ U ∗ = {(0,−1)}. Note that the corresponding auxiliary
problems (1.3) are convex problems with strongly convex objective functions.

• In general, one cannot expect that the regularized problems (1.3) are easier
solvable than the original one.

The main goal of this paper is to discover some possibilities for applying proximal
methods to nonconvex problems. In order to emphasize the basic ideas, only the
exact proximal point method is analyzed in Section 2. Section 3 is concerned with
known applications of the proximal regularization to nonconvex problems and
describes the connection between the proximal approach and respective ideas in
nonconvex optimization.

2. Proximal point method for nonconvex problems

In the sequel, we deal with Problem (1.1),V = IR, without convexity of the objec-
tive functionf . However, the application of the exact proximal point method will
be studied under the hypothesis that the objective functions in (1.3) are strongly
convex on some convex set�, which has to contain the sequence of proximal
iterates{ui}. Due to the evident non-increase of{f (ui)}, � may be any convex
set containing{u ∈ K : f (u) ≤ f (u0)}. In such situation, usually we can handle
with (1.3) as a convex programming problem, and this is a very essential argument
for applying proximal methods. But, of course, the assumption that the function
f (·)+ χ

2‖ · ‖2 becomes convex under a suitable choice ofχ > 0 is restrictive (see
for instance the problemf (u) = min{|u|, |u+ 1|},K = IR1).

Therefore, we start with a simple statement which establishes the property men-
tioned for an important class of nonconvex functions.

PROPOSITION 1.Letf (u) = supτ∈T ϕ(u, τ), f : IRn→ ¯IR, and� be a convex
set such that�∩domf 6= ∅. Assume that all the functionsϕ(·, τ ), τ ∈ T ⊂ IRl are
differentiable on� andsupτ∈T ‖∇uϕ(ū, τ )‖ < ∞ for someū ∈ � ∩ dom f . As-
sume moreover, that for eachτ ∈ T the gradient∇uϕ(·, τ ) is Lipschitz-continuous
on� with a constantLτ andL = supτ∈T Lτ <∞.
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Then, forχ ≥ L, the functionf (·)+ χ

2‖ · ‖2 is convex and finite on�.

Proof.For eachτ ∈ T and arbitraryu, v ∈ � one gets

(∇uϕ(u, τ)+ χu−∇uϕ(v, τ)− χv, u− v) ≥ −L‖u− v‖2 + χ‖u− v‖2.
Hence,ϕ(·, τ )+ χ

2‖ · ‖2 is convex on� if χ ≥ L.

Due to the properties ofϕ(·, τ ), for anyv, u ∈ �, we obtain also

ϕ(u, τ) =ϕ(v, τ)+
∫ 1

0
(∇uϕ(v + t (u− v), τ), u− v)dt

=ϕ(v, τ)+
∫ 1

0
(∇uϕ(v + t (u− v), τ)−∇uϕ(v, τ), u− v)dt

+ (∇uϕ(v, τ), u− v)
≤ϕ(v, τ)+ Lτ

2
‖v − u‖2+ (∇uϕ(v, τ), u− v).

Inserting in this inequalityv = ū and taking into account that

sup
τ∈T
‖∇uϕ(ū, τ )‖ ≡ c <∞,

one can conclude that

ϕ(u, τ) ≤ ϕ(ū, τ )+ Lτ
2
‖u− ū‖2 + c‖u− ū‖,

hence,

sup
τ∈T

ϕ(u, τ)+ χ
2
‖u‖2 = sup

τ∈T
{ϕ(u, τ)+ χ

2
‖u‖2} <∞ ∀u ∈ �.

In view of the convexity ofϕ(·, τ ) + χ

2‖ · ‖2 for eachτ ∈ T , this ensures that the
function9(u) = f (u)+ χ

2‖u‖2 is convex and finite on�. 2

Now, let f : IRn → ¯IR be a given lower semicontinuous function and we
suppose that the functions

f (·)+ χi
2
‖ · ‖2 (χi ∈ (χ, χ̄ ], χ > 0)

are strongly convex on� ⊃ {u ∈ IRn : f (u) ≤ f (û)}. Then, starting the exact
proximal point method

ui+1 = arg min
u∈IRn
{f (u)+ χi

2
‖u− ui‖2} (2.10)

with u0 : f (u0) ≤ f (û), we have the known facts that
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− ui+1 is uniquely defined;

− 0 ∈ ∂(f (ui+1)+ (χi/2)‖ui+1 − ui‖2);

− f (ui+1)+ (χi/2)‖ui+1 − ui‖2 ≤ f (ui).

If inf u∈IRn f (u) > −∞, then the latter inequality yields

f (ui)→ f̄ > −∞ and ‖ui+1 − ui‖ → 0.

Above the term∂ξ denotes the subdifferential of a convex functionξ ,

∂
(
f (ui+1)+ χi

2
‖ui+1 − ui‖2

)
≡ ∂

(
f (·)+ χi

2
‖ · −ui‖2

)
(ui+1).

It is also well-known that a nonlinear programming problem

min {f0(u) : fj(u) ≤ 0, j = 1, ...,m}, V = IRn, (2.11)

whose Lagrangian possesses a saddle point, can be transformed into the uncon-
strained problem

min {f (u) : u ∈ IRn},
with f (u) = max0≤j≤m ηj (u), η0 = f0, ηj = f0 + αfj , j = 1, ...,m and a
sufficiently largeα > 0.

Along with other applications this motivates to consider the proximal point
method (2.10) forf (u) = maxj∈J ϕj (u), |J | < ∞, with differentiable functions
ϕj . Concerningϕj we suppose also that their gradients are Lipschitz-continuous
(with constantsLj ) on some convex set� ⊃ {u : f (u) ≤ f (û)}. Then, due to the
finiteness ofJ , the conditions of Proposition 1 are satisfied.

THEOREM 1. Let the suppositions made onϕj be valid andχi be chosen such
that maxj∈J Lj < χi ≤ χ̄ . Moreover, letinfu∈IRn f (u) > −∞.
Then, starting Method (2.10) withu0 : f (u0) ≤ f (û), we obtain:
either

(i) ui = ui+1 holds for somei, providing thatui is a stationary point off ,

or

(ii) any accumulation point of{ui} is a stationary point off .

Proof.Due to the differentiability ofϕj and the convexity off (·)+ χi
2 ‖ ·−ui‖2

on� the subdifferential∂(f (ui+1)+ (χi/2)‖ui+1− ui‖2) is the convex hull of the
gradients atui+1 of the functionsϕj(·) + (χi/2)‖ · −ui‖2, j ∈ J (ui+1), where
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J (ui+1) = {j ∈ J : ϕj(ui+1) = f (ui+1)}.
Hence, for someλi+1

j ≥ 0, j ∈ J (ui+1), such that
∑

j∈J (ui+1) λ
i+1
j = 1, we obtain

0=
∑

j∈J (ui+1)

λi+1
j ∇ϕj (ui+1)+ χi(ui+1− ui). (2.12)

If ui+1 = ui , then

0=
∑

j∈J (ui+1)

λi+1
j ∇ϕj (ui+1),

hence, the point 0 is included in Clarke’s subdifferential∂clf (u
i+1), proving that

ui+1 is a stationary point off . If {ui} is an infinite sequence and̄u is its accumula-
tion point, then due to the finiteness ofJ and 0≤ λij ≤ 1 ∀j ∈ J (ui),∀i, we are
able to choose a subsequence{ik} such that

J (ui1+1) = J (ui2+1) = · · · = J̄ ,
and fork→∞,

uik+1→ ū and λ
ik+1
j → λ̄j , ∀j ∈ J̄ .

Moreover, because of infu∈IRn f (u) > −∞, the relation

lim
i→∞‖u

i+1 − ui‖ = 0

is valid. Now taking limit in (2.12) fori = ik, k→∞, one gets

0=
∑
j∈J̄

λ̄j∇ϕj (ū), with λ̄j ≥ 0,
∑
j∈J̄

λ̄j = 1.

On account ofJ (ū) ⊃ J̄ and the property of Clarke’s subdifferential, this means
that 0∈ ∂clf (ū), i.e. ū is a stationary point off . 2

REMARK 1. If the set{u : f (u) ≤ f (u0)} is unbounded, the existence of accu-
mulation points, in general, is not guaranteed. Moreover, for the case that Problem
(1.1) is a convex one, it is known that‖ui‖ →∞ if U ∗ = ∅.
REMARK 2. If ū = limk→∞ uik+1 andf is convex onŨ = {u : ‖u−ū‖ ≤ r}with
somer > 0, then of course,̄u is a local minimum off . In this case, on account of
‖ui+1 − ui‖ → 0, for sufficient largek one can claim that‖uik+1− ū‖ ≤ r/2 and

‖uik+l+1− uik+l‖ ≤ r
2
, l = 1,2, ...

Thus,uik+2 ∈ Ũ and henceuik+2 is the minimum point of the sum of the convex
functionsf and(χik+1/2)‖ · −uik+1‖2 on Ũ . From Proposition II.2.2 in [12] we
obtain

f (ū)− f (uik+2)+ χik+1
(
uik+2− uik+1, ū− uik+2

) ≥ 0.
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Together with the evident identity

‖uik+2− ū‖2− ‖uik+1− ū‖2 = −‖uik+2− uik+1‖2
+2

(
uik+2− uik+1, uik+2− ū)

this leads to

‖uik+2− ū‖2− ‖uik+1− ū‖2 ≤ −‖uik+2 − uik+1‖2

+ 2

χik+1

(
f (ū)− f (uik+2)

)
providing that‖uik+2− ū‖ ≤ ‖uik+1− ū‖ and, in general,

‖uik+l+1− ū‖ ≤ ‖uik+l − ū‖, l = 1,2, ...

Hence, the sequence{‖ui − ū‖} converges, and in view of
limk→∞ uik+1 = ū, one can conclude that limi→∞ ui = ū.

It should be noted that we did not suppose thatū is the unique minimum iñU .

The following result is of interest, in particular, for semi-infinite programming
problems, which often can be reduced to the unconstrained minimization of func-
tions of the typef (u) = supτ∈T ϕ(u, τ) with T a compact set.

THEOREM 2. Let the functionf be defined byf (u) = supτ∈T ϕ(u, τ), where
T ⊂ IRl is a compact set andϕ is continuous onIRn × T . Moreover, suppose that
infu∈IRn f (u) > −∞ and that∇uϕ is continuous on� × T , where� is an open
convex set containing{u : f (u) ≤ f (û)}. Finally, let

‖∇uϕ(u′, τ )− ∇uϕ(u′′, τ )‖ ≤ L‖u′ − u′′‖ ∀u′, u′′ ∈ �, ∀τ ∈ T .
Then the functionf (·)+ χ

2‖·‖2 is strongly convex on� if χ > L, and for the proxi-
mal point method (2.10) withL < χi ≤ χ̄ and the starting pointu0 : f (u0) ≤ f (û)
the conclusion of Theorem 1 remains true.

Proof.Due to the compactness ofT and the continuity of∇uϕ on�×T , finite-
ness of supτ∈T ‖∇uϕ(u, τ)‖ is guaranteed for eachu ∈ �. Therefore, Proposition
1 implies strong convexity off (·)+ χ

2‖ · ‖2 on� for χ > L.
Moreover,f is a locally Lipschitzian function and its upper Clarke’s derivative

coincides with the directional derivative (see [9], Example 2.1.4). Therefore, the
theorem about Clarke’s subdifferential for the sum of functions (cf. [8]) permits to
conclude that, foru ∈ �,

∂cl

(
f (u)+ χi

2
‖u− ui‖2

)
= ∂clf (u)+ ∂cl

(χi
2
‖u− ui‖2

)
,
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and with regard to the convexity off (·)+ (χ/2)‖ ·−ui‖2 and(χ/2)‖ ·−ui‖2, this
leads to

∂
(
f (u)+ χi

2
‖u− ui‖2

)
= ∂clf (u)+ χi(u− ui).

Hence,

0 ∈ ∂
(
f (ui+1)+ χi

2
‖ui+1 − ui‖2

)
= ∂clf (ui+1)+ χi(ui+1− ui), (2.13)

and ifui = ui+1, thenui+1 is a stationary point off .
If {ui} is an infinite sequence and̄u = limk→∞ uik , then the inclusion 0∈

∂cl(f (ū)) follows from (2.13), relation‖ui+1 − ui‖ → 0 as well as from the
closedness of the mappingu→ ∂clf (u). 2

REMARK 3. In principle, Theorem 1 could be considered as a particular case of
Theorem 2, however, we preferred to give a direct proof.

Now, let us consider a very special case in nonconvex programming where it
is possible to guarantee that the proximal point method generates a sequence{ui}
converging toū ∈ Arg min{f (u) : u ∈ IRn}.
Let f : IRn → ¯IR be a lower semicontinuous function and domf 6= ∅. With a
givenc > infu∈IRn f (u), define

�c = {u : f (u) ≤ c}.
We want to solve the problem

min {f (u) : u ∈ IRn},
under the following

ASSUMPTION 1.
(i) U ∗ = {u : f (u) = infv∈IRn f (v) ≡ f ∗} 6= ∅;
(ii) �c is contained in a convex set�, and for someχ > 0 the function9(u) =

f (u)+ χ

2‖u‖2 is convex on�;
(iii) for somec0 ∈ [f ∗, c) andχ chosen as in (ii) one has

‖y(u) − χu‖ > d > 0 ∀u ∈ �c\�c0, ∀y(u) ∈ 3(u), (2.14)

where3(u) = ∂9(u)− χu;
(iv) �c0 is convex, andf is convex on�c0.

THEOREM 3. The proximal iterates in (2.10) withχ < χi ≤ χ̄ and arbitrary
u0 ∈ �c converge to a solution pointu∗ ∈ U ∗.
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Proof.Let u0 ∈ �c\�c0. Then it is clear thatui ∈ �c for all proximal stepsi.
Assume now thatui+1 ∈ �c\�c0. Due to

f (u)+ χi
2
‖u− ui‖2 = 9(u)+ χi − χ

2
‖u‖2 − χi(u, ui)+ χi2 ‖u

i‖2

and the definition ofui+1, we obtain

0 ∈ ∂9(ui+1)− χui+1 + χi(ui+1− ui).
Observing (2.14), this leads to

‖ui+1 − ui‖ > d

χ̄
.

Now, taking into account the inequality

f (ui+1)+ χi
2
‖ui+1 − ui‖2 ≤ f (ui),

one can conclude that

f (ui+1) < f (ui)− χ

2χ̄2
d2. (2.15)

Estimate (2.15) shows that, after a finite number of steps, the prox-iterates fall
into the set�c0. With regard to Assumption 1(iv) and the non-increase of{f (ui)},
the use of the convergence results for convex problems (see the introduction part)
ensures convergence of{ui} to a solutionu∗ ∈ U ∗. The same happens ifu0 ∈
�c0. 2

EXAMPLE 3. (Showing the fulfilment of Assumption 1):

V = IR2, f (u) = u2
1+ u2

2+ 15u2
1u

2
2.

Obviously, Assumption 1(i) is valid:u∗ = (0,0) is the unique minimum. The
functionf is nonconvex, but it is strongly convex on the sphere{u ∈ IR2 : ‖u‖ ≤
1/
√

15}. Outside of this sphere we have‖∇f (u)‖ > 2/
√

15. Therefore, the As-
sumptions 1(iii) and (iv) are satisfied, for instance withc = 2 andc0 = 1/15. As it
follows from Proposition 1, Assumption 1(ii) can also be satisfied for any convex
compact set� containing�c with c = 2.

REMARK 4. Insignificant modifications in the proofs of the Theorems 1-3 permit
to establish analogous statements for the inexact version of the proximal point
method (1.2) with stopping rules (1.4).

We finish this section by considering the constrained problem

min {f (u) : u ∈ K}, (2.16)
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whereK ⊂ IRn is a convex closed set andf is twice differentiable onK. Let us
introduce the operator

T u :=
{ ∇f (u)+ NK(u) if u ∈ K
∅ if u 6∈ K,

with NK(u) = {v ∈ IRn : (v, z− u) ≤ 0 ∀z ∈ K} the normal cone of the setK at
the pointu ∈ K.

ASSUMPTION 2.
(i) For a givenc > inf{f (u) : u ∈ K} the setQ = {u : 0 ∈ T u, f (u) ≤ c}

is nonempty, and if̄u ∈ Q, thenū is a local minimum off onK;
(ii) For somed̄ > 0 the set{u : f (u) ≤ c, infy∈T u ‖y‖ < d̄} is bounded.

PROPOSITION 2. Suppose that Assumption 2 is satisfied for Problem (2.16).
Then for eachδ > 0 there existsd ∈ (0, d̄) such thatu belongs to theδ-neighbor-
hoodUδ(ū) of some local minimum̄u ∈ Q, wheneveru ∈ K, f (u) ≤ c and
infy∈T ‖y‖<d.

Proof.Suppose that for someδ > 0 such a constantd does not exist. Denoting
byUδ the union ofδ-neighborhoods of all local minima inQ, we choose a sequence
{di} → +0, di < d̄ and definewi ∈ K\Uδ, yi ∈ T wi such that

f (wi) ≤ c, ‖yi‖ < di.
Due to Assumption 2(ii), without loss of generality, one can assume that{wi}
converges to a point̄w. For this point we infer that

w̄ ∈ K and f (w̄) ≤ c. (2.17)

Because of

yi = ∇f (wi)+ vi for somevi ∈ NK(ui) and

∇f (wi)→ ∇f (w̄), ‖yi‖ → 0,

one getsvi → v̄ = −∇f (w̄). But from the definition of the normal coneNK(wi),
the inequality

(vi, wi − z) ≥ 0 ∀z ∈ K
holds true, and taking limit, we infer

(v̄, w̄ − z) ≥ 0 ∀z ∈ K,
i.e. v̄ ∈ NK(w̄). Therefore, 0= ∇f (w̄) + v̄ ∈ T w̄, and due to (2.17) and
Assumption 2(i),w̄ is a local minimum, contradicting the fact that{wi}∩Uδ = ∅.2

Suppose now that for Problem (2.16) the set{u ∈ K : f (u) =
infv∈K f (v)} is nonempty and that for someχ > 0 the function9(u) = f (u) +
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χ

2‖u‖2 is convex onK. ( Due to Proposition 1, these conditions are fulfilled, in
particular, ifK is a non-empty and bounded set). Then, obviously, the function

ζ(u) :=
{
9(u) if u ∈ K
+∞ if u 6∈ K

is convex, lower semicontinuous and∂ζ(u)−χu = T u. If, moreover, Assumption
2 is valid, then using Proposition 2 and the proof of Theorem 3, one can easily
show that, for arbitraryδ > 0, the iteratesui, generated by the exact method (1.2)
with χ < χi ≤ χ̄ and the starting pointu0 ∈ K : f (u0) ≤ c, belong toUδ for
sufficiently largei (i ≥ i(δ)).

EXAMPLE 4. V = IR2, K = {u ∈ IR2 : −1≤ u1 ≤ 1, −1≤ u2 ≤ 1},
f (u) = (1− u2

1)u
2
2. Evidently, we have

U ∗ = {(u1,0) : −1≤ u1 ≤ 1} ∪ {(1, u2) : −1≤ u2 ≤ 1}
∪ {(−1, u2) : −1≤ u2 ≤ 1}

and

{u ∈ K : ∇f (u) = 0} = {(u1,0) : −1≤ u1 ≤ 1} ⊂ U ∗.
Now, calculating∇f on the boundary ofK, it is easy to see that Assumption 2(i)
is fulfilled with anyc > 0, and Assumption 2(ii) follows from the boundedness of
K.

Of course, it should be emphasized that the verification of the Assumptions
1(iii), (iv) and 2(i) causes difficulties. However, these conditions are not binding
for treating proximal point methods. Nevertheless, the complete validity of As-
sumption 2 or 1 ensures a much more comfortable result, namely, according to
Theorem 1 and 2, convergence to a local or global minimum.

3. Proximal point ideas in methods of nonconvex optimization

A retrospective analysis of some algorithms for nonconvex minimization shows
their relationship to proximal methods. This concernes, in particular, a series of lin-
earization methods. Let us consider briefly the linearization method suggested by
Pshenichnyi [25]. Its application to Problem (2.11) with continuously differentiable
functionsfj , j = 0, ...,m, can be described as follows.

Given the numbersδ ≥ 0, ν > 0, α ∈ (0,1) and a starting pointu0, define

F(u) = max{0, f1(u), ..., fm(u)},

Jδ(u) = {j ≥ 1 : fj(u) ≥ F(u)− δ},
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�ν = {u : f0(u)+ νF(u) ≤ f0(u
0)+ νF(u0)}.

We suppose that the set�ν is bounded and the gradients∇f0,∇f1, . . . ,

∇fm are Lipschitz-continuous on�ν. Moreover, let for eachu ∈ �ν the quadratic
programming problem

P (u) min

{
(∇f0(u), d)+ 1

2
‖d‖2 : (∇fj(u), d)+ fj(u) ≤ 0, ∀j ∈ Jδ(u)

}
,

be solvable, and
∑

j∈Jδ(u) λj (u) ≤ ν hold for some Lagrange multipliersλj(u) of
P (u).

Now, let the iterateui be given, then the(i + 1)-th step of the method consists
of the following substeps:

1. Solve the quadratic problem

min {(∇f0(u
i), u)+ 1

2
‖u− ui‖2}

s.t.(∇fj(ui), u− ui)+ fj(ui) ≤ 0, j ∈ Jδ(ui); (3.18)

2. With the solutionũi+1 of Problem (3.18) define the smallest integerk ≥ 0
satisfying

f0

(
ui +

(
1

2

)k
(ũi+1 − ui)

)
+ νF

(
ui +

(
1

2

)k
(ũi+1− ui)

)

≤ f0(u
i)+ νF(ui)−

(
1

2

)k
α‖ũi+1 − ui‖2; (3.19)

3. Putui+1 = ui + (1
2

)k
(ũi+1 − ui).

Obviously, calculation of the current pointũi+1 is nothing else than one step of the
proximal point method applied to a linear model of Problem (2.11) in a neighbor-
hood ofui . Substep 2 prevents from a ‘non-local’ application of this approximation.

Under the assumptions given above, each accumulation point of{ui} satisfies
the necessary optimality conditions for Problem (2.11).

As far as we know, the first direct generalization of the proximal point method
for certain nonconvex minimization problems was performed by Fukushima and
Mine [13]. They considered the unconstrained problem

min {f (u)+ φ(u) : u ∈ IRn},
whereφ : IRn → ¯IR is a proper convex, lower semicontinuous function, andf :
IRn → ¯IR is continuously differentiable on an open set including domφ. Given a
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starting pointu0 ∈ domφ and regularization parametersχi ∈ (χ, χ̄ ), χ > 0, the
(i + 1)-th step of the method calculates

ũi+1 = arg min
{
(∇f (ui), u)+ φ(u)+ χi

2
‖u− ui‖2 : u ∈ IRn

}
,

and

ui+1 = ui + αi(ũi+1− ui),
where the step-sizeαi is defined by means of the Armijo rule, too.

As a particular case, ifφ ≡ 0, a gradient type method is obtained, and iff ≡ 0
then the choiceαi ≡ 1 is possible leading to the usual proximal point method for
convex problems.

In [13] it is proved that each accumulation point of{ui} is a stationary point of
the functionf + φ if, in particular, the set

D = {u : f (u)+ φ(u) ≤ f (u0)+ φ(u0)}
is bounded,D ⊂ ri domφ andf + φ is Lipschitz-continuous onD.

Spingarn [29] has developed the proximal point method for finding a zero of a
maximal strictly hypomonotone operatorT : IRn→ 2IRn . In this method, proximal
iterations are performed not with the operatorT , but with an auxiliary Lipschitz
continuous operator constructed in a convex neighborhoodU of a point ū : 0 ∈
T ū. The method, adapted in [29] to the problem of the local minimization of a
functionf = g− h, with g lower semicontinuous, convex andh of classC2, turns
into the ‘usual’ proximal point method

ui+1 = arg min
u∈U

{
f (u)+ χ

2
‖u− ui‖2

}
.

If χ > 0 is chosen such thatf (·) + (χ/2)‖ · ‖2 is convex onU , andu0 is chosen
close enough to a local minimum̄u of f , and if the mapping∂f−1 has a monotone
derivative at(0, ū), then{ui} converges tōu linearly.

A very important result in [29] is: The assumption that∂f −1 has a monotone
derivative at(0, ū) is generically fulfilled (more precisely, this assertion is proved
at classes of functions

fv(u) = f (u)− (v, u),
wheref is as above andv ∈ IRn is a parameter).

Finally, let us observe Kiwiel’s proximal bundle method [21] destined for the
nonconvex nonsmooth problem

min {f (u) : u ∈ IRn}. (3.20)
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Here it is supposed thatf : IRn → IR is a locally Lipschitzian function and that
we are able to computef (u) and an arbitrary elementg(u) ∈ ∂clf (u). For locally
Lipschitzian functions it holds

∂clf (u) ≡ co { l : vi → u, ∇f (vi) exists and∇f (vi)→ l},
co denotes the convex hull.

This bundle method can be described conceptually as follows: In the(i + 1)-th
step let the pointsuk, yk, k = 0, ..., i, and the setJ i ⊂ {1, ..., i} be given, where
u0 = y0 are arbitrarily chosen andJ 0 = {0}.
A polyhedral model off is defined by

f̌ i+1(u) = max{f (ui)− α(ui, yj )+ (g(yj ), u− ui) : j ∈ J i}, (3.21)

with α(u, y) = |f (u)− f (y)− (g(y), u− y)|. Choosingχi > 0, at(i+ 1)-th step
a descent directiondi+1 has to be calculated by means of

di+1 = arg min
{
f̌ i+1(ui + d)+ χi

2
‖d‖2 : d ∈ IRn

}
. (3.22)

Then calculate

ui+1 = ui + t iLdi, yi+1 = ui + t iRdi,
with 0 < tiL = t iR ≤ 1, if a linear search allows to findui+1 such thatf (ui+1)

is ‘substantially less’ thanf (ui); otherwise sett iL = 0 ( i.e.ui+1 = ui), and the
choice of the step-sizet iR ∈ (0,1] has to ensure that the next modelf̌ i+2 with
i + 1 ∈ J i+1 approximatesf ‘substantially better’ thanf̌ i+1, at least at the point
ui + di+1. The new setJ i+1 is chosen such thatJ i+1 ⊂ J i ∪ {i + 1}.

Due to the nonconvexity off we have to take into account:

• in general,f̌ i+1 is a useful local approximation off only when the points
yj , j ∈ J i, are close toui . This enforces to choose forJ i only a partJ̌ i−1 of
J i−1 (J i = J̌ i−1 ∪ {i}) such thatyj , j ∈ J̌ i−1, are close to ui;

• the choiceχi has to provide thatui + di+1 belongs to some trust region{u :
‖u − ui‖ ≤ ρi}, wheref̌ i+1 is close tof . Concerning a strategy for varying
ρi in dependence on the properties off , see, for instance [10].

Avoiding details, the method considered can be interpreted as the following modi-
fication of the proximal point method:

ũi+1 = arg min
u∈IRn

{
f̌ i+1(u)+ χi

2
‖u− ui‖2

}
, (3.23)

ui+1 = ui + t iL(ũi+1 − ui). (3.24)
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Thus, formally this method follows the scheme of iterative proximal regularization
(1.8), (1.9) developed for convex problems.

Note that the polyhedral functionšf i are convex, and̃ui+1 can be found by
solving the quadratic programming problem

ζ + χi
2
‖u− ui‖2→ min

s.t.− α(ui, yj )+ (g(yj ), u− ui) ≤ ζ, ∀j ∈ J i.
If the initially chosenχi is not suitable, i.e.‖ũi+1−ui‖ > ρi, one can use a simple
procedure to varyχi until ‖ũi+1 − ui‖ ≈ ρi is achieved (cf. [20]). This procedure
is based on the important property that a trajectory

u(χ) = arg min
{
f̌ i+1(u)+ χ

2
‖u− ui‖2 : u ∈ IRn

}
describing the dependence of the proximal pointu(χ) on χ is continuous and
piecewise linear in 1/χ [28].

Kiwiel’s method can be interpreted as atrust region methodperformed with
polyhedral models for the objective function, the Euclidean norm to set up the trust
region and a special procedure for minimizing a polyhedral function on this trust
region.

In [21] it is proved that each accumulation point of{ui} is a stationary point
of Problem (3.20). Moreover, in case the functionf is convex, Kiwiel’s algorithm
possesses the characteristic property of the proximal point method:

eitherui → ū ∈ Arg minf, or Arg minf = ∅ and ‖ui‖ →∞,
andf (ui)→ infu∈IRn f (u) takes place.
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