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Abstract. The goal of this paper is to discover some possibilities for applying the proximal point
method to nonconvex problems. It can be proved that — for a wide class of problems — proximal reg-
ularization performed with appropriate regularization parameters ensures convexity of the auxiliary
problems and each accumulation point of the method satisfies the necessary optimality conditions.
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1. Introduction

The proximal point method was first suggested by Martinet [24] for solving varia-
tional problems of the form

min{f): u e K}, (1.2)

where f : V — R = R U {400} is a proper convex lower semicontinuous
functional andK is a convex closed subset of a Hilbert sp&ce
The method is described as

Wt~ argmind o + 2w — w2} (1.2)
uek 2
with «° € V an arbitrary point andly;} a given sequence, @ x; < ¥ < oo.

Obviously, to deal with a real numerical algorithm, Method (1.2) has to be
combined with an optimization algorithm for solving the auxiliary problems

min { £ (u) + %Hu W2 ue K). (1.3)
If the optimal set/* of Problem (1.1) is non-empty, then weak convergence of the
iterates in (1.2) to some* € U*, as well as convergence of the objective values
{f @)} to f(u*), are guaranteed under the condition that, in each prox:staep
point '+ approximates

i . Xi i
Prr U = argurgll(n{f(u) + 5”” —u ||2}
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with sufficient accuracy, namely,

utt—p u' < e, Al < 00. 14
[ Pr 'l < Z - (1.4)
Concerning the conditions providing strong convergencgu6f, see [18, 23].
Some of these conditions do not exclude hat U* = oo.
Proximal point methods are a fundamental tool for solving ill-posed or ill-
conditioned problems. Because, in distinction to the Tikhonov regularizatios,
0 is not required for ensuring convergence, the auxiliary problems (1.3) possess
better properties than the corresponding auxiliary problems in Tikhonov’s method.
In particular, if f is sufficiently smooth, then by means of an appropriate choice of
X, One attains at all iterations a proper conditionality of the Hessians of the objec-
tive functions in (1.3) (or their approximations, in cages infinite dimensional).

Thus, we deal with well-posed auxiliary problems (1.3), and the behaviour of
the sequence {u#'} is defined by the properties of theproximal

mapping
P=Prx,acV —arg m[i<n{f(u) + %Hu —a||2}, (x>0, (L5)

which generates the iterates (1.2).

Important properties of the proximal mapping are, in particular (cf. [17], Section
8):

e 2 is afirmly non-expansive operator, i.e. it holds
1PV = PVII? < flv = V'[P = [(T = P)v = (T = PW? Vu,v' €V;

Pu=u <& uelUr

the functionaln(a) = min,cx { f (1) + 4llu — a||?} is convex and continu-
ously differentiable oV, andVn(a) = x(a — Pa) (differentiability of f is
not supposed).

Starting with the papers of Rockafellar [27], the proximal point method was
extended to problems of finding a zero of a maximal monotone (in general, multi-
valued) operator, including as special cases monotone variational inequalities,
convex—concave games etc. It is well-known that ttestenes—Powell multiplier
method(see [26]) for convex programming problems as well as Blueiglas—
Rachford splitting methotkee [11]) for finding a zero of the sum of two monotone
operators are special cases of the proximal point method.

— In order to clarify this relationship for the Hestenes—Powell multiplier method, let us
consider the convex problem

min{ fo(w) : fjw) <0, j=1,...m}, V=R"
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The current vectoii ™ in the exact multiplier method, performed with the aug-
mented Lagrangian
1 m
LGt r) = folw) + 5= 3 {ma(0. 4 +rf;@)] - 23}

j=1

coincides with
Fery ! =g max|e) — Lpp a2}, x =
&4 X R 2 ’ r’

where

g0 = inf {fo(u) + 3 A (u)} . (1.6)

Jj=1

Here the operato‘rsg,RLX is an analogue of the proximal mapping (1.5), correspond-
ing to the maximization problem

max{g(d) : A € RV}

Obviously,g is a concave function.

Besides the applications of the classical proximal point method, there are a
lot of methods using proximal regularization to stabilize standard optimization or
discretization techniques. A part of these methods can be briefly described as fol-
lows: When the standard algorithm applied to Problem (1.1) constructs (formally)
a sequence of auxiliary problems

min{ f;(u) : u € K; C V}, (1.7)

then the corresponding ‘regularized’ method takes the form

A~ arg min {fia(u) + 2w — ut |2}, (1.8)
uek, 2

i+1

utt =u 4o @t — u), «a; €[0,1], 1.9)

i.e. ‘iterative’ regularization of a sequence of auxiliary problems is performed.
Usuallye; = 1, i.e.u’t! = #’+1, but line-search can also be met in the literature.

We refer to [1, 4, 17] for proximal penalty methods, to [2, 26] for proximal mul-
tiplier methods and to [16] for proximal methods in the framework of discretization
of elliptic variational inequalities and convex semi-infinite programming prob-
lems. A modification of the scheme (1.8), (1.9) is developed in [17, 19]: proximal
iterations for thei-th auxiliary problem (1.7) are repeated until they provide a
‘significant’ decrease of the objective functigh

In the last fifteen years the number of papers dealing with proximal-like meth-
ods is growing rapidly. One can distinguish some main directions in the develop-
ment of this technique:
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e Modifications of the standard methods for convex optimization in order to
ensure a more qualified convergence of a minimizing sequence (for instance,
to prevent oscillation) and a better stability of the auxiliary problems [cf. 14,
17, 26];

e Stable successive approximation or discretization of ill-posed monotone vari-
ational inequalities [cf. 17, 19, 22];

e Decomposition methods for convex minimization problems, without any as-
sumption on strong or strict convexity of the objective functional [cf. 7, 11,
14];

e Proximal-like methods using Bregman’s distance function [cf. 5, 6, 15].

However, convex problems have been considered almost exclusively. Even for
multiplier methods, intensively studied in the nonconvex case, the ‘proximal’ as-
pect has been analyzed only for convex problems, although the furGtaefined
by (1.6), remains concave under nonconygxf;, too.

Reasons for this distrust might be:

e The proximal mapping for a nonconvex problem may be no more nonexpan-
sive, even in an arbitrary small neighborhood of a local or global solution.
This mapping does not necessarily possess the Fejer-property i, tao.

EXAMPLE 1. K =V = R? f(u) = min{u3, u3}. Obviously, the optimal
set of this problem is

U'={ueR?: uy=0U{u e R?*: up, =0}.
Consider the analogue of the proximal mapping (1.5):
. & _ 2
aeV - Arggy[p{f(uH lu—al }

with x = 2 and take two pointa! = (2o, @) anda? = (@, 2«) with an
arbitrary smalke > 0. Then

= (ng). 7ot= (5.2

and

9
|Pat — Pa?| = o> V2o = |la* - &?.

e Using the proximal method in the nonconvex case, iterations may terminate
in a point, which is not a local minimum.
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EXAMPLE 2.

V=R? K={u=(us,up): us+us<0u; <0, —up <1},

— 1, 0_
fu) =—us — Euz’ u = (—Z, Z)-
After one step of the exact proximal method (1.2) performed wjth= 2
we obtainu! = (0, 0), which is a fixed point of the corresponding proximal
mapping, but! ¢ U* = {(0, —1)}. Note that the corresponding auxiliary
problems (1.3) are convex problems with strongly convex objective functions.

e In general, one cannot expect that the regularized problems (1.3) are easier
solvable than the original one.

The main goal of this paper is to discover some possibilities for applying proximal
methods to nonconvex problems. In order to emphasize the basic ideas, only the
exact proximal point method is analyzed in Section 2. Section 3 is concerned with
known applications of the proximal regularization to nonconvex problems and
describes the connection between the proximal approach and respective ideas in
nonconvex optimization.

2. Proximal point method for nonconvex problems

In the sequel, we deal with Problem (1.¥)= R, without convexity of the objec-

tive function . However, the application of the exact proximal point method will
be studied under the hypothesis that the objective functions in (1.3) are strongly
convex on some convex s&, which has to contain the sequence of proximal
iterates{u'}. Due to the evident non-increase {of(x’)}, © may be any convex

set containinu € K : f(u) < f@°}. In such situation, usually we can handle
with (1.3) as a convex programming problem, and this is a very essential argument
for applying proximal methods. But, of course, the assumption that the function
fO+4I0- > becomes convex under a suitable choiceg of 0 is restrictive (see

for instance the problenfi(u) = min{|u|, |u + 1|}, K = RY).

Therefore, we start with a simple statement which establishes the property men-
tioned for an important class of nonconvex functions.

PROPOSITION 1.Let f (1) = sup..; ¢(u, 7), f: R" — R, andQ be a convex
set such thaNdomf # ¢. Assume that all the functiorsg-, 7), € T C R are
differentiable on2 andsup,.; [|V.e(u, 7)|| < oo for someu € Q@ Ndom f. As-
sume moreover, that for eaehe T the gradientV, (-, ) is Lipschitz-continuous
on Q with a constantL, andL = sup..; L, < oo.
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Then, fory > L, the functionf (-) + || - % is convex and finite of2.

Proof. For eachr € T and arbitrary, v € Q one gets
(Vup(u, ) + 3t = Vv, T) = xv, u —v) = —Llu = v]|> + xllu — v||>.

Hencegp(-, 7) + 4|l - [|? is convex or if x > L.

Due to the properties @f(-, 7), for anyv, u € 2, we obtain also
1
ou,7) =9, 1) +/ Vup(w +t(u —v), 1), u — v)dt
0

=W, 1)+ /Ol(Vuga(v +t(u—v),7)— Vo, 1), u —v)dt
+ (Vup(v, 1), u — v)
<9, 0 + Sl — ul + (Vap (v, 7)1~ v).
Inserting in this inequality = & and taking into account that

teT

one can conclude that
_ L, 2 _
ou,7) <e,1)+ 7||u —u||*+cllu — ul,
hence,

sup(u, 7) + Ljull? = sudeu, 7) + X u)|?} < 00 Vu € Q.
teT 2 teT 2

In view of the convexity ofp(-, 7) + || - |2 for eachr e T, this ensures that the
function ¥ (u) = f(u) + %||u||2 is convex and finite oM. m|

Now, let f : R® — R be a given lower semicontinuous function and we
suppose that the functions

O+ %n M Gue Gkl x> 0)

are strongly convex o® D {# € R" : f(u) < f(@)}. Then, starting the exact
proximal point method

w1t = arg min{ f (1) + ﬁ”u —u'||?) (2.10)
ueR" 2

with u° : f(w® < f(&), we have the known facts that
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u'*1is uniquely defined;
— 0€d(f ™ + OGu/Nu ™ —ul||?);
— f@) 4+ Qe /N — w2 < fd).
Ifinf,cre f(u) > —o0, then the latter inequality yields
fu')— f>—-co and |utt—u|| > 0.
Above the termdé denotes the subdifferential of a convex functign
0 (FQ+ Sl —u1?) =0 (£ + S = l1?) @,
It is also well-known that a nonlinear programming problem
min { fo(u) : fj) <0, j=1,...,m}, V=R", (2.11)

whose Lagrangian possesses a saddle point, can be transformed into the uncon-
strained problem

min{f) : u € R"},

with f(u) = maX<j<,nj®), no = fo, nj = fo+af;, j =1..,manda
sufficiently largex > O.

Along with other applications this motivates to consider the proximal point
method (2.10) forf (1) = max;c; ¢;(u), |J| < oo, with differentiable functions
¢;j. Concerningy; we suppose also that their gradients are Lipschitz-continuous
(with constantd. ;) on some convex s& D {u : f(u) < f(i#)}. Then, due to the
finiteness of/, the conditions of Proposition 1 are satisfied.

THEOREM 1. Let the suppositions made @n be valid andy; be chosen such
thatmax;c; L; < x; < x.Moreover, leinf,cg: f(u) > —o0.

Then, starting Method (2.10) withf : £ (°®) < £ (&), we obtain:
either

(i) u' = u'*! holds for somé, providing thatu’ is a stationary point off,
or
(i) any accumulation point ofu'} is a stationary point off.
Proof. Due to the differentiability ofp; and the convexity of (-) + 4| - —u' 1%

on  the subdifferentiab ( f (u'*1) + (x;/2)|lu’** — u'||?) is the convex hull of the
gradients au'*! of the functionsy;(-) + (x;/2)|l - —u'|?, j € J(u't1), where
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J@™) ={jeJ: gt = fuh) A
Hence, for some’™* > 0, j € J(u'*h), such tha®y";_, i, A} = 1, we obtain

0= Z A;J“lV(pj @™ + @ = ). (2.12)
jeJuitl)
If u't1 = u’, then
0= Z )\'l]+1V(ﬂ] (ui-‘rl)’
jeJuitl)

hence, the point 0 is included in Clarke’s subdifferengialf («’*1), proving that
u't1is a stationary point of . If {u'} is an infinite sequence amds its accumula-
tion point, then due to the finiteness Hfand 0< Ai;‘ <1V, e J(u"),Vi, we are
able to choose a subsequerie such that

J(ui1+l) _ J(ui2+l) ———
and fork — oo,
u ' - i and k;”l — X, Vjeld.
Moreover, because of infg» f (1) > —o0, the relation
lim Ju'™* — 4’| =0
i—00
is valid. Now taking limit in (2.12) fori = i, k — o0, one gets
0=> A;Vg;@). withi; >0, Y ;=1
jeJ jeJ
On account of/ (1) > J and the property of Clarke’s subdifferential, this means

that Oc 9., f (1), i.e.u is a stationary point of . O

REMARK 1. Ifthe set{u : f(u) < fu®)} is unbounded, the existence of accu-
mulation points, in general, is not guaranteed. Moreover, for the case that Problem
(1.1) is a convex one, it is known thi’ || — oo if U* = @.

REMARK 2. Ifii = lim_ o u’*ttand f is convex o/ = {u : |u—i|| < r} with
somer > 0, then of coursey is a local minimum off. In this case, on account of
luit* —ul|| — 0, for sufficient largek one can claim thafu*** — ii|| < r/2 and

. . r
L i) < > =12

[Ju

Thus,u**2 ¢ U and hence/**2 is the migimum point of the sum of the convex
functions £ and (x;, +1/2) || - —u**1||2 on U. From Proposition 11.2.2 in [12] we
obtain

flia) — fu™?) + Xips1 (uik+2 it uik+2) > 0.
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Together with the evident identity
||uik+2 _ 12||2 _ ||uik+l _ 12||2 — _||uik+2 _ uik+1”2
42 (uik+2 _ uik+1, Mik+2 _ l/_t)
this leads to
||uik+2 _ 12||2 _ ||uik+l _ 12||2 < _||uik+2 _ uik+1”2

+ (f@) — f@'*?)

Xig+1
providing that||u™**? — | < ||u’**! — i|| and, in general,
1 — | < e —al, =12, ..

Hence, the sequence{|lu’ — i} converges, and in view of
lim;_, - u***1 = &, one can conclude that lim., u’ = .

It should be noted that we did not suppose #hit the unique minimum it

The following result is of interest, in particular, for semi-infinite programming
problems, which often can be reduced to the unconstrained minimization of func-
tions of the typef (1) = sup..; ¢(u, ) with T a compact set.

THEOREM 2. Let the functionf be defined byf(x) = sup..; ¢(u, ), where
T c R!is a compact set and is continuous orR” x T. Moreover, suppose that
inf,crr f(u) > —oo and thatV, ¢ is continuous o2 x T, whereQ is an open
convex set containinfy : f(u) < f(@)}. Finally, let

IVup @', ) = Vup", D)l < Lllu' —u"]l Vu', u"eQ, VreTl.

Then the functiorf (-)+ £ - |%is strongly convex oR if x > L, and for the proxi-
mal point method (2.10) with < x; < ¥ and the starting poink® : f(u°) < f (%)
the conclusion of Theorem 1 remains true.

Proof. Due to the compactness Bfand the continuity oV, onQ x T, finite-
ness of sup.; |V,¢(u, 7)|| is guaranteed for each € 2. Therefore, Proposition
1 implies strong convexity of (-) 4+ £ - |20onQ for x > L.

Moreover, f is a locally Lipschitzian function and its upper Clarke’s derivative
coincides with the directional derivative (see [9], Example 2.1.4). Therefore, the
theorem about Clarke’s subdifferential for the sum of functions (cf. [8]) permits to
conclude that, fon € €,

0 (£ @) + Sl = 12) = B £ @) + 0 (5 Iu = ' 1P).
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and with regard to the convexity gf(-) + (x/2)| - —u'||?> and(x /2)|| - —u'||?, this
leads to

0 (£ 00+ Sl = w'12) = 00 £ (o) + 0 = ).
Hence,
0€d (£ + 2™ —u'IP) = 0 f™h) + ™ =i, (213)

and ifu’ = u'*1, thenu'+! is a stationary point of .

If {u'} is an infinite sequence and = lim,_, ., u’*, then the inclusion Oc
0. (f (i) follows from (2.13), relation|u’*' — u’| — 0 as well as from the
closedness of the mapping— 9., f (u). ]

REMARK 3. In principle, Theorem 1 could be considered as a particular case of
Theorem 2, however, we preferred to give a direct proof.

Now, let us consider a very special case in nonconvex programming where it
is possible to guarantee that the proximal point method generates a seuiénce
converging ta: € Argmin{f(u) : u € R"}.

Let f : R” — R be a lower semicontinuous function and dgin @. With a
givenc > inf,cre f (1), define

Qe=A{u: fu) <ch
We want to solve the problem
min{f() : u € R"},
under the following

ASSUMPTION 1.
() U= {u: f) =infuere f(0) = f*) # 0
(i) . iscontained in a convex s& and for some > 0 the function¥ (1) =
f () + %|ull?is convex ore2;
(iii) for somecg € [f*, ¢) andx chosen as in (ii) one has

ly(w) — xull >d >0 VYu e Q\RQ,, VYyu)eAu), (2.14)

whereA (u) = 0V (1) — xu;
(iv) ., Iis convex, andf is convex ore2,.

THEOREM 3. The proximal iterates in (2.10) with < x; < x and arbitrary
u® € Q. converge to a solution point* € U*.
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Proof.Letu® € Q.\Q,,. Then itis clear that’ € . for all proximal steps.
Assume now that'*! € Q,.\Q,,. Due to

Xi — X
2

Xi i i Xi, i
F) + Sl —u 12 = W(u) + ||u||2—xi<u,u>+§||u |12

and the definition ofi’*t1, we obtain

Oe alll(ui+l) _ Xui+l + Xi(ui+l _ ui)'
Observing (2.14), this leads to
d

||ui+l _ ul” > —.

Now, taking into account the inequality

i Xi i i i
f™) + > llu H_u? < fh),

one can conclude that

FtY < fuh) — a2 (2.15)
252

Estimate (2.15) shows that, after a finite number of steps, the prox-iterates fall

into the set,,. With regard to Assumption 1(iv) and the non-increas¢faf:')},

the use of the convergence results for convex problems (see the introduction part)

ensures convergence gf'} to a solutionu* € U*. The same happens if ¢

Q O

co*

EXAMPLE 3. (Showing the fulfilment of Assumption 1):

V =R? f(u) = ub + us + 1565u3.

Obviously, Assumption 1(i) is valide* = (0, 0) is the unique minimum. The
function £ is nonconvex, but it is strongly convex on the sphigres R? : |ju|| <
1/+4/15}. Outside of this sphere we hay& f (u)|| > 2/+/15. Therefore, the As-
sumptions 1(iii) and (iv) are satisfied, for instance with- 2 andcg = 1/15. As it
follows from Proposition 1, Assumption 1(ii) can also be satisfied for any convex
compact sef2 containing2, with ¢ = 2.

REMARK 4. Insignificant modifications in the proofs of the Theorems 1-3 permit
to establish analogous statements for the inexact version of the proximal point
method (1.2) with stopping rules (1.4).

We finish this section by considering the constrained problem

min {£(u) : u € K}, (2.16)
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whereK C R”" is a convex closed set anflis twice differentiable ornk. Let us
introduce the operator

V@ +Nkw) fuek
=g if u ¢ K,

with Ny (u) = {v € R" : (v,z — u) < 0Vz € K} the normal cone of the séf at
the pointu € K.

ASSUMPTION 2.
() Foragivenc > inf{f(u): ue K}thesetQ ={u: 0 Tu, f(u) <c}
is nonempty, and ifi € Q, theni is a local minimum off on K;
(i) Forsomed > Othe sefu: f(u) <c, inf,cr, |ly]l < d} is bounded.

PROPOSITION 2. Suppose that Assumption 2 is satisfied for Problem (2.16).
Then for eacls > Othere exists! € (0, d) such thatu belongs to thé-neighbor-
hood U;(iz) of some local minimund € Q, wheneverx € K, f(u) < ¢ and

infyer Iyl <d.

Proof. Suppose that for som> 0 such a constant does not exist. Denoting
by Us the union ofs-neighborhoods of all local minima i@, we choose a sequence
{d;} — 40, d; < d and definew’ € K\U;, y' € 7w’ such that

fwh <e, Iyl < d;.

Due to Assumption 2(ii), without loss of generality, one can assume{thgt
converges to a poinb. For this point we infer that

weK and f(w)<c. (2.17)
Because of

y = Vfw')+v forsomev’ € Ng(u') and
Vi) — V@), [yl —0,

one gete’ — v = —V f(w). But from the definition of the normal conéx (w'),
the inequality

W, w'—2z)>0 VzeK
holds true, and taking limit, we infer
(v,w—2z)>0 VzeKk,

i.e. v € Ng(w). Therefore, 0= Vf(w) + v € Tw, and due to (2.17) and
Assumption 2(i) is a local minimum, contradicting the fact tHat’ }NU; = @. O

Suppose now that for Problem (2.16) the dat ¢ K : f(u) =
inf,ex f(v)} is nonempty and that for some > 0 the function¥ (u) = f(u) +
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§||u||2 is convex onkK. ( Due to Proposition 1, these conditions are fulfilled, in
particular, ifK is a non-empty and bounded set). Then, obviously, the function

Y fuek
§(”)‘—{Jroo it u ¢ K

is convex, lower semicontinuous afg(u) — xu = 7 u. If, moreover, Assumption

2 is valid, then using Proposition 2 and the proof of Theorem 3, one can easily
show that, for arbitrarg > 0, the iterates:’, generated by the exact method (1.2)
with x < x; < x and the starting point® € K : fu° < ¢, belong toU; for
sufficiently largei (i > i(8)).

EXAMPLE4. V=R% K={ueR?: —1<u; <1, —1<up<1),
f@) = (1 — u?)u3. Evidently, we have

U ={(u,0): =1 <u1 <1JU{(Lup): —1<up; <1
U{(—Lup): —1<up <1}

and
{ueK:Vfu) =0 ={u,0:-1<u, <1} cU".

Now, calculatingV f on the boundary oK, it is easy to see that Assumption 2(i)
is fulfilled with anyc¢ > 0, and Assumption 2(ii) follows from the boundedness of
K.

Of course, it should be emphasized that the verification of the Assumptions
1(iii), (iv) and 2(i) causes difficulties. However, these conditions are not binding
for treating proximal point methods. Nevertheless, the complete validity of As-
sumption 2 or 1 ensures a much more comfortable result, namely, according to
Theorem 1 and 2, convergence to a local or global minimum.

3. Proximal point ideas in methods of honconvex optimization

A retrospective analysis of some algorithms for nonconvex minimization shows
their relationship to proximal methods. This concernes, in particular, a series of lin-
earization methods. Let us consider briefly the linearization method suggested by
Pshenichnyi [25]. Its application to Problem (2.11) with continuously differentiable
functionsf;, j =0, ..., m, can be described as follows.

Given the numberg > 0, v > 0, « € (0, 1) and a starting point°, define

F(”) = maX{O, fl(u)7 ey fm(u)}a

Jsu) ={j=1: fj(u) = F(u) -8},
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Q,={u: fow)+vFu) < fow® +vFu).

We suppose that the se®, is bounded and the gradient€ fo, Vfi,...,
V f.. are Lipschitz-continuous oft,. Moreover, let for each € 2, the quadratic
programming problem

. 1
&P (u) min {(Vfo(u),d) + Elldll2 c(Vfiw),d) + fi(u) <0, Vj e Js(u)} :

be solvable, and
P (u).

Now, let the iterate:’ be given, then the + 1)-th step of the method consists
of the following substeps:

jenu i) < v hold for some Lagrange multiplies; (u) of

1. Solve the quadratic problem

. 1 .
min {(V fo(u'), u) + Sllu — u' |
SL(Vfi),u—u)+ fiu) <0, jeJs); (3.18)

2. With the solutioni’*! of Problem (3.18) define the smallest integer 0
satisfying

S A : SR :
fO <u1+(§> (ft'“—u'))—i—vF (”l"'(E) (ﬁl+l_uz)>

k
< fow") +vF@u') — (%) al@tt —u'|% (3.19)

3. Pututt = ui + (1) @it — uh).

Obviously, calculation of the current poiiat™ is nothing else than one step of the

proximal point method applied to a linear model of Problem (2.11) in a neighbor-

hood ofu’. Substep 2 prevents from a ‘non-local’ application of this approximation.
Under the assumptions given above, each accumulation pofat o§atisfies

the necessary optimality conditions for Problem (2.11).

As far as we know, the first direct generalization of the proximal point method
for certain nonconvex minimization problems was performed by Fukushima and
Mine [13]. They considered the unconstrained problem

min{f(u) +¢u) : u € R"},

where¢ : R” — R is a proper convex, lower semicontinuous function, gnd

R” — R is continuously differentiable on an open set including dbnGiven a
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starting point:® € dom¢ and regularization parameters € (x, x), x > 0, the
(i + 1)-th step of the method calculates

it = argmin { (V£ '), u) + ¢ () + llu =’ |2 u e R"}.
and
ui+1 =u' -+ Ol,'(ﬁi+1 - ui)’

where the step-size; is defined by means of the Armijo rule, too.

As a patrticular case, #h = 0, a gradient type method is obtained, and & 0
then the choicer;; = 1 is possible leading to the usual proximal point method for
convex problems.

In [13] it is proved that each accumulation point{af} is a stationary point of
the functionf + ¢ if, in particular, the set

D={u: fw)+¢w) < fu®) +¢u®}

is boundedD c ri dom¢ and f + ¢ is Lipschitz-continuous om.

Spingarn [29] has developed the proximal point method for finding a zero of a
maximal strictly hypomonotone operatdr: R" — 2R". In this method, proximal
iterations are performed not with the operafoy but with an auxiliary Lipschitz
continuous operator constructed in a convex neighbortiéadf a pointi : 0 €
T u. The method, adapted in [29] to the problem of the local minimization of a
function f = g — h, with g lower semicontinuous, convex ahdf classC?, turns
into the ‘usual’ proximal point method

i+1 _ ; Xy 2
u —arggbn{f(u)+2||u w2}

If x > 0is chosen such that(-) + (x/2)|| - ||? is convex onUU, andu® is chosen
close enough to a local minimuinof £, and if the mappin@f ! has a monotone
derivative at(0, i), then{u'} converges ta linearly.

A very important result in [29] is: The assumption ttsgt—* has a monotone
derivative at(0, i) is generically fulfilled (more precisely, this assertion is proved
at classes of functions

fou) = fu) — (v, u),
where f is as above and € R" is a parameter).

Finally, let us observe Kiwiel's proximal bundle method [21] destined for the
nonconvex honsmooth problem

min{f(u) : u € R"}. (3.20)
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Here it is supposed that : R — R is a locally Lipschitzian function and that
we are able to computé(x) and an arbitrary elemegt(u) € d., f (). For locally
Lipschitzian functions it holds

dafWw)=co{l: vV — u, Vf(') existsandv f(v') — I},

co denotes the convex hull.

This bundle method can be described conceptually as follows: I thel)-th
step let the pointg®, y*, k =0, ...,i, and the sefi’ C {1, ..., i} be given, where
u® = yO are arbitrarily chosen ané® = {0}.

A polyhedral model off is defined by

Sy = max{ f ) — e, y) + (@) u—u): jeld, (321

with o (u, y) = | f(u) — f(y) — (g(y), u — y)|. Choosingy; > 0, at(i + 1)-th step
a descent directiod’ ! has to be calculated by means of

4+ = argmin {f’“(u ray+ X ||d|| ‘d e R”} . (3.22)
Then calculate
ui+l — Mi + tzdl yi+l — ui + t;edl

with 0 < ¢i = i, < 1, if a linear search allows to find*! such thatf (u'*?)
is ‘substantially less’ tharf (u); otherwise set; = 0 (i.e.u'™! = u’), and the
choice of the step-sizg, € (0, 1] has to ensure that the next modéf2 with

i +1 e J™1 approximatesf ‘substantially better tharf+1, at least at the point
u' +d'+1. The new se/’*1 is chosen such that't! c J' U {i + 1}.

Due to the nonconvexity of we have to take into account:

e in general, /"t is a useful local approximation of only when the points
yi, jeldi, are close ta’. This enforces to choose fgf only a part/i—* of
Ji7L(Ji = Ji-1u{i}) such thaty/, j € Ji~1, are close to

e the choicey; has to provide that’ + d'** belongs to some trust regidn :
lu —u'|| < p;}, where fi*1 is close tof. Concerning a strategy for varying
pi in dependence on the propertiesfofsee, for instance [10].

Avoiding details, the method considered can be interpreted as the following modi-
fication of the proximal point method:

it = arg min {fi+l(u) +

ueR

gnu - ut‘nZ} : (3.23)

utt =yt 4 ti(ﬁ”l —u'). (3.24)
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Thus, formally this method follows the scheme of iterative proximal regularization
(1.8), (1.9) developed for convex problems.

Note that the polyhedral functiong’ are convex, and’*! can be found by
solving the quadratic programming problem

.+ %Hu — u"||2 — min
st.—a(', y) 4+ (), u —u) <¢, Vjel.

If the initially choseny; is not suitable, i.eja’** — u’|| > p;, one can use a simple
procedure to vary; until ||z’ ** — u’|| & p; is achieved (cf. [20]). This procedure
is based on the important property that a trajectory

X
2

describing the dependence of the proximal peing) on x is continuous and
piecewise linear in Ay [28].

Kiwiel's method can be interpreted astraist region methogerformed with
polyhedral models for the objective function, the Euclidean norm to set up the trust
region and a special procedure for minimizing a polyhedral function on this trust
region.

In [21] it is proved that each accumulation point{af} is a stationary point
of Problem (3.20). Moreover, in case the functipris convex, Kiwiel's algorithm
possesses the characteristic property of the proximal point method:

u(x) = argmin {f”l(u) +Su—u)?:ue R"}

eitheru’ — i e Argminf, or Argminf =¢ and |u'|| — oo,

and f (u') — inf,cr f (1) takes place.
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